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Abstract 

This paper outlines an implementation of an analytic 
framework that addresses the need to understand 
socio-technical networks as intertwined processes at 
local and network levels of agency distributed across 
various media. We integrate data sources in a single 
abstract transcript of events, and identify empirical 
relationships between these events to build a graph of 
uptake relations—how one act builds on another. We 
then use cohesive subgraph detection to identify 
“sessions” in the space-time dimensions represented 
by these graphs. Analysis can then focus on individual 
sessions and identify key actors within these sessions 
using sociometrics, or find relationships between 
sessions that might be vectors for the transmission of 
ideas or practices. An example is provided using data 
from the Tapped In educator professional network.  

1. Introduction 

Socio-technical networks such as online communities 
and social media can involve intertwined processes at 
individual, small group, and network levels of agency 
distributed across various media. Phenomena of 
interest may involve multiple processes that have been 
theorized and investigated separately [11, 14]. For 
example, theories of learning in social settings vary in 
the agent of learning (e.g., individual, small group, or 
community), and in the process or ‘mechanism’ of 
learning (e.g., information transfer, intersubjective 
meaning-making, shifts in participation and identity, 
and accretion of cultural capital) [17]. Learning and 
other phenomena of interest take place simultaneously 
at all of these levels of agency and with all of these 
processes. Thus, understanding socio-technical systems 
requires revealing the relationships between individual 
and collective levels of agency and potentially 
coordinating analysis at multiple time scales [9].  

The multifaceted and multi-granular nature of 
participation and production of individual and 
collective value in socio-technical networks presents 
an analytic challenge that motivates the work reported 
here: how to meaningfully connect analytic approaches 

across levels of analysis. For example, interpretative 
micro-analysis of interaction (e.g., of chat sessions) 
shows actors' concerns, orientations, and 
accomplishments in the moment, but the relationships 
latent in these interactions must be identified and 
aggregated to identify clusters of activity and 
communities of actors. Yet, aggregated graphs of ties 
fail to capture the means by which these ties were 
accomplished, so such graphs are insufficient for 
understanding the network without also examining the 
interactions from which they were derived. 
Communities of actors empirically emerge from the 
moment-to-moment interactions between actors, but 
also influence the potential for such interactions. These 
observations motivate our use of layered data and 
analytic representations that bridge between session 
and network granularities of analysis.  

We developed our methods using historical data 
from Tapped In®, an environment that offered 
asynchronous threaded discussions, quasi-synchronous 
chat, file sharing, and other media for interaction [6, 
16]. Participants included a mixture of members of 
organizations and others who came to the socio-
technical network of their own accord. All participants 
were free to wander between specific settings and 
events. Consequently, the data generated by a given 
participant resulted in different kinds of traces in the 
log files associated with these media, at different times 
and different virtual spaces. The trace of a participant’s 
unitary experience is fragmented across these logs, and 
needs to be reassembled to reveal this activity. For 
example, Tapped In chat events were recorded in 
distinct files for each chat room, while other events 
such as posting discussion messages or sharing files 
were recorded in a database as web interface events. 
Thus, if a participant chatted in a reception room and 
participated in chat-based events held in two group-
meeting rooms, and also read some threaded discussion 
messages in one of the rooms, that participant’s 
activity would be recorded in four different persistent 
stores. This presents a second analytic challenge: how 
to reassemble fragmented traces of activity into a 
single analytic artifact.  



To preview our approach, logs of events are 
abstracted and merged into a single abstract transcript 
of events, and this is used to derive a series of 
representations that support levels of analysis of 
interaction and of ties. Three kinds of graphs model 
interaction: Contingency graphs record how events 
such as chatting or posting a message are observably 
related to prior events by temporal and spatial 
proximity and by content.  Uptake graphs aggregate 
the multiple contingencies between each pair of events 
to model how each given act may be “taking up” prior 
acts.  Session graphs are abstractions of uptake graphs: 
they cluster events into spatio-temporal sessions and 
capture relationships between sessions. Relationships 
between actors and artifacts are abstracted from 
interaction graphs to obtain “associograms” [20, 21], 
which can be folded into traditional sociograms.  

Other publications have detailed some of the 
theory [8, 17] and analytic representations [19, 21] 
behind this work. In this paper we report on 
computational methods we have developed for 
transforming log files into interaction and session 
graphs and sociograms, and methods for drawing 
conclusions based on these representations. First, we 
provide an overview of the series of computational 
transformations taken. Then, details of the methods 
will be provided in the context of an extended example 
using the Tapped In data. 

2. Overview of the Framework 

The representations used at various levels of analysis 
are shown in Figure 1 (next page). At the bottom, we 
exemplify various traces of activity (such as log files 
of events) that provide the source data. (HTTP logs are 
shown just for illustration: our actual data includes 
database logs and textual transcripts of chats.) These 
are parsed using methods that are necessarily system-
specific to abstract log entries into an event stream, 
shown in the second level (boxes in Figure 1b). This 
event stream is represented using an abstract transcript 
format that records actor and media participants in 
events.  Meaningful events at this level of analysis may 
not have a 1-1 correspondence to log file events. For 
example, the act of posting a message with previewing 
may show up as multiple GET and POST entries in an 
HTTP log file. 

At this level of abstraction (Figure 1b), we 
compute contingencies between events, to produce a 
model of how acts are mutually contextualized (shown 
as arrows). Human action is contingent upon its setting 
in diverse ways: our computational methods capture 
some of these contingencies that are amenable to 
automated detection. A contingency called proximal 
event reflects the likelihood that events occurring close 

together in time and space are related. For example, in 
analyzing quasi-synchronous chat, contingencies are 
installed to prior contributions in the same room that 
occur within an adjustable time window but not too 
recently. A Keystroke Level Model [13] of how long a 
typist would have taken to type the contribution is used 
to ensure that the prior contribution was already visible 
when typing began by closing the window this amount 
of time before the contribution. Address and reply 
contingencies are installed from an utterance 
mentioning a user by name to the last contribution 
(address) and next contribution (reply) by that 
participant within a time window, using a 
parser/matcher of user IDs to first names. Same actor 
contingencies are installed to prior acts of a participant 
over a larger time window to reflect the continuity of 
an agent’s purpose. Overlap in content as represented 
by sets of lexical stems is used to produce a lexical 
contingency weighted by the number of terms 
overlapping. Semantic analysis can also be done. Our 
development strategy is to see how far we can get with 
these simpler contingencies before adding 
computational complexity. Examples of specific 
contingencies are given later in the paper. 

The resulting contingency graph (e.g., Figure 1b) 
is represented as the first layer of abstraction in what 
we call an Entity-Event-Contingency graph or EEC 
[19]. In the EEC, graph vertices are Events. These can 
be of various types (e.g., enter chat, exit chat, chat 
contribution), and are annotated with time stamps and 
optionally associated Entities, which include human 
actors, content (e.g., message content), and locations 
(e.g., rooms) involved in the event. Contingencies are 
typed edges between vertices (the types were described 
in the previous paragraph), and there may be multiple 
edges between any two vertices (e.g., two proximal 
events by the same actor with lexical overlap). 

It is necessary to collapse the multiple edges 
between vertices into single edges for two reasons. 
First, most graph algorithms assume that there is at 
most only one edge between two vertices. Second, and 
more importantly, we are interested in uptake, the 
relationship between events in which a human action 
takes up some aspects of prior events as being 
significant in some manner [19]. For example, replying 
to prior contributions in a chat or discussion is an 
example of uptake. The concept of uptake is not 
specific to a medium (it can cross media) or limited to 
“transactivity” [3] (uptake need not be explicitly 
directed at a dyadic partner). Contingencies are of 
interest only as collective evidence for uptake. So, we 
abstract the contingency graph to an uptake graph, 
using a weighted (and presently linear) combination of 
the various types of contingencies between 
contributions (vertices) to derive a single uptake 



relation represented as a graph edge weighted to reflect 
strength of evidence in the contingencies. Different 
weights can be used for different purposes (e.g., 
finding sessions; analyzing the interactional structure 
of sessions).  

As shown in Figure 1c, uptake graphs are similar 
to contingency graphs in that they also relate events, 
but they collect together bundles of contingencies 
between a given pair of vertices into uptake relations, 
optionally filtering out low-weighted bundles. At this 
point, we can do several interesting things with these 
uptake graphs. A graph clustering algorithm is applied 
to the uptake graph to find clusters of related 
contributions that we call “sessions” (indicated by 
rounded containers in Figure 1c). A session can cross 

settings such as chat rooms. Inter-session and intra-
session analysis proceeds from here.  

For inter-session analysis, we collapse each 
session into a single vertex representing the session, 
but retain the inter-session uptake links. (For example, 
there are four sessions in Figure 1c and two inter-
session uptakes.) These inter-session links indicate 
potential influences across time and space from one 
session to another. An example will be given shortly in 
conjunction with Figure 4.  

For intra-session analysis, the uptake graph for a 
session is isolated. Two paths are possible from here. 
The sequential structure of the interaction can be 
micro-analyzed to understand the development of 
group accomplishments: this part is not automated, 

 
 

Figure 1. Levels of Analysis and their Representations 
 



although future work includes analysis of uptake 
patterns in the form of graph configurations to identify 
sessions with features of interest. Or we can fold the 
uptake network into an actor-actor sociogram (directed 
weighted graph), where the tie strength between actors 
is the sum of the strength of uptake between their 
contributions (Figure 1d). This sociogram can be 
analyzed using conventional social network analysis 
methods such as degree or eigenvector centrality to 
identify key actors, etc. [12, 23].  

In summary, as an analytic integration tool our 
framework provides multiple pathways for analysis, 
some of which are diagrammed in Figure 2. 
Contingencies are applied to events in the EEC abstract 
transcript to produce a contingency graph. 
Contingencies are then aggregated into uptake between 
the same events. A single aggregation can be used, or 
optionally (as shown in Figure 2) different weightings 
can be used for identifying sessions by graph 
partitioning versus for doing detailed interaction 
analysis. (We are currently studying whether it is 
productive to use different weightings for these 
purposes.) In either case, uptake that crosses partitions 
can be used to identify influences across space and 
time, and uptake within partitions can be analyzed to 
study the interactional structure of a session. Uptake 
graphs may be folded into networks where nodes are 
actors rather than events, to which sociometrics are 
applied.  

Another line of analysis not discussed in this paper 
is to fold events into actor-artifact networks, or 
bipartite weighted directed graphs that are called 
“associograms” for short, because they capture how 
actors are associated with each other via mutual read 
and write of media objects. In that line of work, we 
have undertaken community analysis of associograms 
to detect not only human participants in communities, 
but also the artifacts that reflect their mediated nature 
(e.g., synchronous or asynchronous) [20].  

3. Implementation 

Our primary implementation is in Java. The core 
implementation includes classes defining events and 
entities that participate in events, along with base 
classes for contingencies that relate events, and a class 
that collects them into EEC graphs. Composite 
contingencies and events aggregate these objects to 
represent uptake and sessions, respectively. Domain 
model classes define specific kinds of entities such as 
actors, chats, discussions, etc., and datasource classes 
define how to import log files into these 
representations.  We use the Hibernate object/relational 
model and persistence engine (hibernate.org/orm) to 

enable processing of large graphs and storage of 
results.  

Layered on top of the EEC, analyzer classes define 
workspace objects for specifying and storing analyses, 
classes that run specific analysis steps (e.g., computing 
lexical stems and contingencies, combining 
contingencies into uptake, finding sessions, exporting 
graphs), and another class defining scripts that control 
these steps. As exemplified in Tables 1 and 2, XML 
scripts control processing, including selection of type 
and range of source data from the EEC (not shown); 
sequencing of analytic steps (partially shown in Table 
1); and weighting of contingencies (Table 2). We call 
out to the JVM-based implementation of Python 
(www.jython.org) to use the NLTK library (nltk.org) 
for lexical processing, and spawn external processes to 
utilize the iGraph package (igraph.sourceforge.net) for 
graph operations such as graph partitioning. Presently 
we run analyses in Eclipse (www.eclipse.org/) and 
export results for viewing in tools such as Gephi 
(gephi.org).  

4. Example 

Here we illustrate the approach with an analysis we 
conducted of data from the Tapped In network. 

 
 
Figure 2. Process Model  



4.1 Tapped In 

This study drew on data from SRI International’s 
Tapped In® (tappedin.org), an international online 
network of educators involved in diverse forms of 
informal and formal professional development and 
peer support [6, 16]. According to its developers, 
Tapped In was motivated by the desire to understand 
how to initiate and manage large heterogeneous 
communities of educators, how such communities 
evolve, and the benefits that participants derive from 
their involvement. This network included activities that 
were sponsored by formal organizations (e.g., 
universities, school districts, and nonprofits) mixed 
with volunteer driven and other unsponsored activities, 
in both synchronous and asynchronous media, with 
participants from across all career stages and diverse 
occupations related to education. Thus, Tapped In is an 
opportunity to develop and test hypotheses, tools, and 
techniques for understanding heterogeneous networks. 
Cumulatively, Tapped In hosted the content and 

activities of more than 150,000 education professionals 
(over 20,000 per year in our study period) in thousands 
of user-created spaces that contain threaded 
discussions, shared files and URLs, text chats, an event 
calendar, and other tools to support collaborative work. 
Over its 16-year history, more than 50 organizations, 
including education agencies and institutions of higher 
education, consulted with Tapped In staff and became 
“tenants” in the system with online courses, 
workshops, seminars, mentoring programs, and other 
collaborative activities. There were also approximately 
40-60 public activities per month designed by Tapped 
In members and open to anyone in the community 
(including tenant members). Volunteers drove the 
majority of Tapped In community-wide activity [6]. 
Extensive data collection capabilities captured the 
activity of all members and groups, including chat 
data, discussion board interactions, and file sharing. 
The trend in current social media is for such data to be 
treated as a proprietary asset, so the Tapped In data 
corpus offers a valuable opportunity for study.  

Table 1. Portion of an XML analysis script  
Analysis is controlled by a script such as the following. Time window sizes over which contingencies 
scope have been chosen by experimentation with our data, and can easily be adjusted for other data.  
 
<step bundlename=“apps.analyzer” classname=“apps.analyzer.script.PythonScriptStep” > 
 <stepconfig scriptref=“nltk/lancaster_stemmer.py” /> 
</step> 
<step bundlename=“apps.analyzer” classname=“apps.analyzer.script.ProximalEventRule”> 
 <stepconfig windowsize=“120” tag=“PE120” /> 
</step> 
<step bundlename=“apps.analyzer” classname=“apps.analyzer.script.LexicalRule”> 
 <stepconfig windowsize=“300” tag=“LR300” /> 
</step> 
<step bundlename=“apps.analyzer” classname=“apps.analyzer.script.AddressRule”> 
 <stepconfig windowsize=“300” tag=“AR300” /> 
</step>  
<step bundlename=“apps.analyzer” classname=“apps.analyzer.script.ReplyRule”> 
  <stepconfig windowsize=“300” tag=“RR300” /> 
</step> 
<step bundlename=“apps.analyzer” classname=“apps.analyzer.script.SameActorRule”> 
 <stepconfig windowsize=“300” tag=“SA300” /> 
</step> 
... steps to find sessions, compute uptake and sociograms, and export graphs follow ...  
 

Table 2. A weighting scheme for combining contingencies into estimations of uptake  
LexicalContingency is additionally weighted proportional to the number of overlapping lexical stems. 
Weights reflect how strongly a contingency evidences uptake (e.g., mentioning someone by name is 
stronger evidence than merely chatting soon after that person), and are being adjusted through 
experimentation with our data. We do not claim that these weights are the best for other applications. 
 
<weighter bundlename=“apps.analyzer” classname=“apps.output.weighting.StandardWeighter”> 
 <weighting defaultweight=“1” threshold=“2”> 
  <entry typesuffix=“AddressContingency”      weight=“3” /> 
  <entry typesuffix=“ReplyContingency”   weight=“3” /> 

<entry typesuffix=“SameActor”   weight=“2” /> 
<entry typesuffix=“LexicalContingency”       weight=“1” /> 

  <entry typesuffix=“ProximalEvent”   weight=“1” /> 
 </weighting> 
</weighter>  
 



We selected a period from September 2005 
through May 2007 for our research, and used smaller 
samples within this period to develop and test our 
methods. This period was chosen because graphs of 
activity showed peak usage during this time, and we 
wanted to study a successful network. (Usage tapered 
off after 2010, and Tapped In was shut down in 2013.) 
Here we report an example analysis of 3 days of data, 
which includes a session of particular interest in the 
second day. This session, a “Teaching Teachers” 
session on mentoring, had previously been chosen for 
micro-analysis due to its high quality of interaction. A 
brief sample of the chat is shown in Table 3. We 
wanted to test whether the methods described above 
would detect anything significant about this session 
and how it was embedded in its surrounding context.  

The first step was to import data from the log files 
into our EEC format. Tapped In log files were in both 
database format and raw text files for chat transcripts: 
custom translators were written to import a sequence of 
events organized by time (boxes in Figure 1b).  

4.2 Contingencies and Uptake 

An XML script drives the contingency and uptake 
analysis, as discussed previously. Educator chats tend 
to be deliberative; hence, for our data we set the 
window for the Proximal Event contingency at 120 
seconds before the contribution (Table 1). Shorter 
durations have been used for faster paced chats [15]. 
We are initially using conservative parameters for 
Keystroke Level Modeling, namely expert typist values 

published in [13] of M=0.6 and K=0.08, where M the 
average time for a mental operation initiating the 
action and K is the average time to strike a key. For 
example, the contribution by A2 at 23:38 in Table 2 is 
50 characters long: 0.6 + (50*0.08) = 4.6 seconds, so 
this cannot be taking up M’s question at 23:35 (the full 
transcript shows that it continues a prior question). In 
contrast, M’s question is within the proximal event 
scope of A2’s contribution at 23:42. Similarly, the 
simultaneous contributions at 24:09 cannot be 
contingent on each other, and 25:18 cannot be 
contingent on 25:17 even though D and M are clearly 
in conversation with each other.   

Similar computations are used to limit the 
temporal scope of other contingencies, although a 
larger time window of 300 seconds was used (Table 2). 
An Address Contingency is placed between D’s 24:27 
“That is an interesting question M” and M’s prior 
question at 23:35; while a Reply Contingency is placed 
between M’s “… thought about often D” at 24:42 and 
D’s 24:27. All of M’s later contributions are contingent 
on the earlier ones by Same Actor in this short excerpt. 
Although most contingencies are limited to events in 
the same room, we allow Same Actor to cross rooms. 
Exemplifying the Lexical Contingency, the lexical 
stems for A2's contribution at 23:38 (“some people will 
…”) are {peopl, tak, get, point} and for A's 
contribution at 24:09 (“some people are …”) are  
{peopl, excel, teach, horr, ment}. These overlap on 
“peopl”.  (Stop words such as “some” have been 
filtered. The “some people” similarity of wording 
suggests adding a new contingency based on repeated 
bigrams or n-grams.) 

The resulting graph can have multiple 
contingencies between a pair of events, and is too 
complex to visualize (Figure 1b offers a schematic). 
Many network algorithms can only operate on graphs 
with a single edge or arc between any two vertices 
(nodes), and we want to estimate the extent of uptake 
between acts. Hence, using weights like those in Table 
2, we collapse the multiple contingencies between two 
events into a single weighted arc representing the 
extent to which the second is related to the first: the 
“uptake graph” of Figure 1c. All operations described 
below are on the uptake graph except where noted.  

4.3 Sessions 

The next step was to empirically identify sessions 
(temporally contiguous interactions between a set of 
actors) in the uptake graph. Although Tapped In had 
scheduled “calendar events” where participants met in 
a particular room at a particular time, there were also 
many other sessions that took place spontaneously or 
were not announced in the calendar, and sometimes 

Table 3. Sample chat from Tapped In 
Full names have been abbreviated to initials. 

23:35 M: are all good teachers good mentors? 
23:38 A2: some people will take a while to get to that point 
23:42 A2: No..not all 
23:51 E: definitely not 
23:55 L: Training can help, but I think some is personality 
24:09 A: some people are excellent teachers but are 

horrible mentors 
24:09 E: some great teachers can not hold a decent 

conversation with an adult 
24:11 A2: i had to co-ops who would be awful mentors 
24:24 L: Nods 
24:27 D: That is an interesting question M,  ... I would 

probably say 'yes' first off, and then wonder some 
more 

24:42 M: it is something I have thought about often D 
24:47 A2: I think its alot of personality 
25:17 D: one thing a mentor has to know is how to 

operate with a peer, and ow to be intentional about 
handing over, or encouraging greater independence 

25:18 M: observation has made me think that it takes an 
extra “special ingredient” to tip the scales 

 



even formal events would move between rooms. 
Therefore, we sought to empirically identify the 
sessions that actually took place. We compared 
algorithms for detection of cohesive subgraphs 
(“community detection algorithms”, [7]), applied to the 
uptake graph to identify sessions. A future publication 
will report the relative merits of several algorithms and 
the definitions of “session” that they imply. The 
example reported here used a modularity partitioning 
algorithm [4] implemented in iGraph, which implies 
that sessions are partitions of the uptake graph that are 
more highly connected within each partition than 
expected at random [12]. Modularity partitioning can 
find clusters of activity even when there is continuous 
activity resulting in a weakly connected uptake graph. 
However, when sessions have clear beginnings and 
ends without overlap (i.e., contingencies do not span 
the gaps), simply finding weakly connected 
components is sufficient.  

In Figure 3 we show the uptake graph for the 
three-day period. All visualizations are in Gephi 
(gephi.org, [2]). This particular visualization uses the 
OpenOrd layout algorithm [10], a hierarchical version 
of traditional force-directed algorithms that group 
nodes according to their interconnectedness. Nodes are 
individual chat or discussion contributions, and colors 
represent the modularity partitions.  

Each colored connected cluster corresponds to a 
session. The visualization made clear that there were a 
surprising number of interactive sessions taking place 
in Tapped In over this three-day period: there are 112 
partitions. Interestingly, some sessions crossed rooms: 
sometimes a “tour” would start in one room and move 
to others, or persons would meet in the Reception room 
and then move elsewhere. Although we find it to be 

interesting and sometimes useful to inspect them, 
visualizations such as Figure 3 are in general difficult 
to interpret, so we use computational tools for further 
analysis as follows.  

4.4 Inter-Session Relations and Key Sessions 

After finding modularity partitions of the activity 
graph, the analysis can take two paths, as was shown in 
Figure 2. Within a session, analysis of uptake structure 
between contributions and (by folding) between actors 
helps us understand interaction and roles, respectively. 
Analysis of uptake between sessions is of interest for 
understanding how actors and ideas move between 
settings across time and space in a socio-technical 
system. Both of these paths are exemplified below.  

Figure 4 shows each session collapsed into a 
single node. Weights on edges crossing sessions were 
summed, and the weighted in-degree for each session 
is shown as node size. Several of the sessions have 
larger node size, indicating their apparent influences on 
subsequent sessions. Of particular interest is the larger 
pink session node with a large green arrow pointing to 
it from a smaller light green session node (inset). What 
is the relationship between these sessions? First we 
examined the pink session, the chronologically prior 
session being “taken up” by the later one.  

4.5 Session Example 

It turned out that the modularity partition visualized as 
the large pink node almost exactly captured the 
Teaching Teachers session on mentoring in the 
schools. The events placed in this partition included all 

 
Figure 3. Uptake Graph for Three Days 

 
Figure 4. Inter-session uptake graph with 

close-up view 



of the Teaching Teachers session contributions, and 
only a few other events in other locations at the 
beginning and end (from the Same Actor contingency). 
Events in this partition included initial entries into the 
Teaching Teachers room and introductions, followed 
by an in depth discussion of peer mentoring of teachers 
in schools, facilitated by M, lasting nearly an hour 
(excerpted in Table 3). Near the end, M mentions that 
she needs to leave for another discussion, and the 
others thank her and say goodbye. Interestingly, the 
modularity-partitioning algorithm placed in this 
session the first few utterances of M showing up in the 
new session in another room, which we shall call an 
“In Training” group.  

On inspection, we found that other partitions in 
this case study, as well as dozens of partitions from 
runs on other space-time spans of data, also 
corresponded to sessions with clear interpretations as 
to the boundaries and purpose of the gathering. This is 
remarkable because the partitions were derived purely 
with algorithmic methods: no information about 
sessions was provided to the algorithms. Thus the 
method shows promise as an automated way of 
identifying meaningful social events.  

4.6 Inter-Session Relations 

As visualized in our graphs, uptake arcs are drawn 
from the chronologically later event to the prior event 
being taken up, and the same is true of the collapsed 
session graph in Figure 4. What is the nature of the 
session that is the source of the large green arrow in the 
inset of Figure 4, i.e., that it depends on the session we 
just examined? Looking at the event sequence for this 
session, we found that it is the In Training session that 
the facilitator M has just joined. Furthermore, two of 
the participants in her previous Teaching Teachers 
session, A2 and L, followed her there. This is the 
reason for the thickness (weight) of the green arrow: 
three actors have moved from one session to another, 
resulting in Same Actor contingencies connecting the 
sessions. This relationship suggests that it might be 
fruitful to see whether any ideas discussed in the 
Teaching Teachers session were carried over to In 
Training.  

4.7 Intra-Session Analysis of Key Actors 

A preliminary analysis of the uptake structure of the 
Teaching Teachers session is reported in [18]. Here we 
focus on the sociogram level of analysis (Figure 1d). 
Folding the uptake graph for this session into an actor-
actor sociogram, we obtained the graph shown in 
Figure 5. Node size is weighted in-degree, showing the 
relative importance of actors in terms of the extent to 

which we estimate that others take up their 
contributions. (Eigenvector centrality can also be used 
to estimate transitive importance.) Not surprisingly, the 
most uptake was from contributions by the session 
leader M. Inspecting user profiles and prior activity, 
we found that two other prominent participants, L and 
D, were experienced members who sometimes 
facilitated their own sessions. Additionally, the 
sociogram helped us notice the importance of other 
actors: A, A2 and E. A2 was a “newbie” trying out 
Tapped In for her first time, and it seems significant 
that she followed M into the next session.  

5. Discussion 

5.1 Summary and Applications 

This paper outlined an analytic approach in which log 
events are abstracted and merged into a single abstract 
transcript of events, and this is used to derive a series 
of representations that support multiple levels of 
analysis of interaction (contingency and uptake graphs, 
and session graphs) and of ties (associograms and 
sociograms). An example illustrated how our analytic 
framework and supporting algorithms can (1) find 
relationships between contributions in the relatively 
unstructured medium of chats; (2) parse the stream of 
activity into sessions defined as densely connected 
clusters of activity based on these relationships; (3) 
make influences between sessions across time and 
space visible; and (4) enable sociometric analysis of 
individual sessions.  

This capability makes it possible for managers of 
socio-technical networks such as online communities, 
MOOCs, etc. to automatically find clusters of 

 
Figure 5. Session sociogram with 

weighted in-degree.  



interaction between participants and to identify 
important actors in these sessions. For example, the 
software could be adopted to take periodic (daily, 
weekly) log files, and generate reports of the size and 
locations of sessions and of prominent actors in these 
sessions. Tapped In community managers (personal 
communication) have indicated that, due to the volume 
of activity and the mixture of sponsored and 
unsponsored events, they could not keep track of 
everything taking place in their environment, and 
would have benefited from knowing about and offering 
support to unknown key actors. 

The approach can be applied in any socio-
technical network in which actors produce 
contributions visible to other actors, provided that it is 
possible to (1) obtain a log file and stream of events 
that identifies the actor, time, location, and content of 
each act; and (2) there is a basis for inferring which 
other actors potentially accessed (read) these 
contributions. It can be generalized to asynchronous 
discussions, although some rules for generating 
contingencies will need to be rewritten to acknowledge 
the different temporality of asynchronous discussion 
and to leverage other information such as thread 
structure and quotation practices [1]. We have begun 
such a generalization with Tapped In data, and plan to 
integrate it with the chat analysis for cross-media 
analysis.  

5.2 Contributions 

Our work addresses two analytic challenges arising 
from the nature of participation in socio-technical 
networks. First, since learning and knowledge 
production in socio-technical networks takes place 
through a synergistic mixture of individual and 
collective agency, we need to understand aggregate 
phenomenon (e.g., “ties”, “roles”, and “communities”) 
as both produced by and providing the setting of 
specific interactional events. Our framework addresses 
this with linked abstractions that coordinate multiple 
levels of analysis. Second, participant interaction is 
distributed across media, places and time in these 
environments, potentially resulting in separate traces of 
interaction that fragment their unitary experience. Our 
framework addresses this by building on an abstract 
transcript of interaction.  

Algorithms for cohesive sub-cluster detection have 
been used extensively in studying socio-technical 
networks [7], but usually on graphs of ties between 
actors. Our innovation is to apply cohesive sub-cluster 
detection to graphs of relationships between events 
(such as chat contributions) to find “communities” of 
events in a time-space matrix; that is, sessions. Once a 
session is identified, we can fold the session graph into 

a sociogram of ties between actors. Others have done 
this as well using temporal proximity (e.g., Rosen & 
Corbit [15]), but we also consider other relations 
between events to provide a richer basis for session 
identification and subsequent analysis of activity and 
actors within sessions. Work by Trausan-Matu on 
“polyphonic analysis” [22] has affinities to our use of 
multiple contingencies, but has only recently been 
abstracted to higher levels of analysis. A thesis by 
Charles [5] has provided an alternative implementation 
of our approach and extended the set of contingencies. 
Our approach dovetails with work that applies natural 
language processing methods for syntactic, semantic 
and pragmatic analysis of interactional structure, and 
indeed rules for generating additional contingencies 
could be derived from such research.  

5.3 Future Work 

Ongoing work includes experimenting with different 
algorithms for identifying sessions, and tuning weights 
on contingencies for capturing the interactional 
structure of sessions. Once these are well grounded, we 
can study how patterns of uptake and metrics on the 
derived sociograms relate to session quality, and use 
these to automatically identify sessions of interest. 
Two other near-term concerns include using inter-
session relationships to trace the spread of ideas, and 
incorporating analysis of asynchronous discussions for 
analysis of cross-media influences.   

Looking further ahead, automating the generation 
of interaction and social network graphs opens up 
several new research approaches for relating fine-
grained interaction to more aggregated levels of 
analysis. One approach is to generate multiple social 
networks during a session, and track the change in 
actors’ relational properties (e.g., reciprocity, 
clustering coefficient, and centrality) in order to 
recognize significant changes to the group structure or 
role emergence in individuals. We could also automate 
the generation of social network graphs at significant 
points over the entire history of the online 
environment, to identify frequently interacting 
individuals and track the growth and fragmentation of 
overlapping communities. It might be possible to 
identify critical points in the formation of healthy or 
unhealthy communities. 

All of these analytic options are products of our 
system’s abstraction away from media-specific forms 
and the automation of mapping between levels of 
analysis that this abstraction enables. 
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